扬州大学数学科学学院欢迎您 ,今天是 : 2018年6月8日 English 简体中文

学术交流
您当前的位置 : 首页 > 新闻公告 > 学术交流


数学科学学院学术报告2018-11

信息来源:浏览次数:字体:[ ]

Title: Some Geometry Aspects of Non-Abelian Zeta Functions

1.      Fokker-Planck Equations and Non-Abelian Zeta Functions

Abstract: Over the moduli space of rank $n$ semi-stable lattices $\La$ is a universal family of toruses. Along the fiber $\R^n/\La^\vee$ over $[\La]$, there are natural differential operators  and differential equations,  particularly, the heat equations, the Fokker-Planck equations in statistical mechanics, the Hamiltonians in quantum mechanics, and quantum harmonic oscillators. In this talk, we explain why, by taking averages over the moduli spaces, all these are connected with the zeros of rank $n$ non-abelian zeta functions of the field of rationals. Since a weak Riemann hypothesis is proved for these non-abelian zeta functions, all but finitely many non-abelian zeta zeros lie on the central line. We expect this would give some implications in both physics and mathematics.

2.      Volumes of Moduli Spaces of Semi-Stable Lattices

Abstract: By  a result of Siegel, the total volume of the moduli space of rank $n$ lattices is $\whz(2)\cdots\whz(n)$. In this talk, we investigate the volume of the submoduli space parametrizing semi-stable lattices. This is achieved via an analytic interpretation of parabolic reduction for the stability condition,  an analogue of a result of Lafforgue for number fields. We will give an explicit formula for such a volume in terms of the Riemann zeta function $\whz(s)$, and the structures of parabolic subgroups of $\SL_n$. At the end of this talk, we will mention the application of this result to the establishment of a weak Riemann Hypothesis for non-abelian zeta functions.

人:翁 林  教授  日本九州大学 数理学研究院

报告时间:1.  20180309日(星期五)下午1600

          2.  20180313日(星期二)下午1600

报告地点:数学科学学院38号楼报告厅

主办单位:数学科学学院

欢迎广大师生!

(编辑:)
【打印本页】【我要纠错】【关闭窗口】

[全文下载]:
分享到:
0
Produced By 大汉网络 大汉版通发布系统